Service Industry
Your Location:
Homepage
/
服务行业
Another major breakthrough in quantum precision measurement! Help realize artificial intelligence algorithms to accelerate the detection of two-dimensional nano-NMR spectra

Another major breakthrough in quantum precision measurement! Help realize artificial intelligence algorithms to accelerate the detection of two-dimensional nano-NMR spectra

2020.08.18
Recently, Academician Du Jiangfeng of the Key Laboratory of Microscopic Magnetic Resonance of the University of Science and Technology of China, Professor Shi Development, etc. and Professor Wu Xiaodong of the University of Iowa have made new progress in the quantum precision measurement of the diamond nitrogen-vacancy (NV) color center system. Using the deep learning neural network method to accelerate the two-dimensional nano-NMR spectrum based on diamond quantum precision measurement technology, the detection efficiency is improved by nearly an order of magnitude. The research results are titled "Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy" and published in "npj Quantum Information" in September 2020 [npj Quantum Information 6, 79 (2020)]. The analysis of the molecular structure of substances is an important means for the properties and functions of substances in chemistry and life science research. NMR is widely used in structural biology and clinical medicine due to its advantages of non-destructive, physiological conditions and even in-situ detection. Traditional NMR technology is limited by signal collection methods and can only measure collective signals generated by billions of molecular ensembles. In recent years, the diamond nitrogen-vacancy color center has been used as a magnetic sensor to realize nano-magnetic resonance spectroscopy. The Key Laboratory of Microscopic Magnetic Resonance of the University of Science and Technology of China is in the direction of nano-NMR based on the NV color center, and on the optical detection magnetic resonance (ODMR) experimental platform, it is the first time to use a pair of coupled carbon-13 nuclear spins as the detection object to realize nano-two-dimensional NMR spectrum [Published in Adv. Quantum Technol. 2020, 3, 1900136 (2020) at the beginning of this year]. Due to the extremely weak microscopic NMR signal, in order to obtain a higher signal-to-noise ratio in the nanoscale two-dimensional NMR spectrum measurement experiment, it often takes a long time (several hours to days) to accumulate the signal. In order to improve the detection efficiency, the research team led by Du Jiangfeng applied artificial intelligence methods to the data processing and analysis of two-dimensional nuclear magnetic resonance spectroscopy, training deep learning neural networks through model data, and combining the matrix filling method, which finally made the time consumption Under 10% conditions, a nearly 4 times (~5.7dB) increase in signal-to-noise ratio can still be obtained. The two-dimensional spectrum is the key to the analysis of spin distance and the basis of the analysis of single molecule structure. This work provides a universal method suitable for acceleration of two-dimensional nuclear magnetic resonance spectroscopy, which can be applied to the structure analysis of single molecules at the nanometer scale. Associate Professor Kong Xi from Nanjing University, Dr. Zhou Leixin from the University of Iowa, and Li Zhijie, a doctoral student in the Key Laboratory of Micromagnetic Resonance, Chinese Academy of Sciences, are the co-first authors of this article. The research was funded by the Ministry of Science and Technology, the National Natural Science Foundation of China, the Chinese Academy of Sciences and Anhui Province.
Research Industry

Research Industry

2021.11.15
The company adheres to the scientific research spirit of "promoting red and professional, blending theory and practice" and shoulders the mission of "Science and technology serve the country, and industry rejuvenates the nation." , Fulfilling its mission, fulfilling its mission, and becoming a quantum technology enterprise, allowing quantum technology to truly help industry and benefit society.
Achitechive

Achitechive

2021.11.15
The company adheres to the scientific research spirit of "promoting red and professional, blending theory and practice" and shoulders the mission of "Science and technology serve the country, and industry rejuvenates the nation." , Fulfilling its mission, fulfilling its mission, and becoming a quantum technology enterprise, allowing quantum technology to truly help industry and benefit society.
Power Industry

Power Industry

2021.11.15
The company adheres to the scientific research spirit of "promoting red and professional, blending theory and practice" and shoulders the mission of "Science and technology serve the country, and industry rejuvenates the nation." , Fulfilling its mission, fulfilling its mission, and becoming a quantum technology enterprise, allowing quantum technology to truly help industry and benefit society.
Education Industry

Education Industry

2021.11.15
The company adheres to the scientific research spirit of "promoting red and professional, blending theory and practice" and shoulders the mission of "Science and technology serve the country, and industry rejuvenates the nation." , Fulfilling its mission, fulfilling its mission, and becoming a quantum technology enterprise, allowing quantum technology to truly help industry and benefit society.
Important progress in quantum precision measurement: a new method of nanoscale electrical detection based on NV color centers

Important progress in quantum precision measurement: a new method of nanoscale electrical detection based on NV color centers

2021.10.28
It is reported that Du Jiangfeng, Shi Kaifa, Wang Ya and others from the Key Laboratory of Micromagnetic Resonance of the Chinese Academy of Sciences have made important progress in the research direction of diamond single-spin quantum precision measurement.
Congratulations to the website of Anhui Guosheng Quantum Technology Co., Ltd. is online!

Congratulations to the website of Anhui Guosheng Quantum Technology Co., Ltd. is online!

2021.09.30
Congratulations to the website of Anhui Guosheng Quantum Technology Co., Ltd. is online!
Important progress in quantum precision measurement: a new method for nanoscale electrical detection based on NV color centers

Important progress in quantum precision measurement: a new method for nanoscale electrical detection based on NV color centers

2021.09.30
It is reported that Du Jiangfeng, Shi Kaifa, Wang Ya and others from the Key Laboratory of Micromagnetic Resonance of the Chinese Academy of Sciences have made important progress in the research direction of diamond single-spin quantum precision measurement. They proposed and experimentally realized a diamond nitrogen-vacancy (NV) color The single spin of the core is the electrical detection method of the quantum sensor (hereinafter referred to as the "diamond quantum sensor"), and the magnetically suppressed NV color center realizes the extraction of the electrical noise information of the diamond near the surface, which is the application of the diamond quantum sensor in the direction of electrical detection. Provide new ways. And the research results were published in the recent "Physics Review Letters" in the form of "Editor's Recommendation" [Nanoscale Electrometry Based on a Magnetic-Field-Resistant Spin Sensor, Phys. Rev. Lett. 124, 247701 (2020)]. The high-resolution and high-sensitivity detection of basic physical quantities such as electricity and magnetism has important applications in the fields of physics, materials, and life sciences. The NV color center in diamond becomes a highly sensitive magnetic quantum sensor due to its superior coherence properties under room temperature atmospheric environment. It has the comprehensive advantages of high sensitivity and high resolution in magnetic detection and imaging. It has been used in single-molecule magnetic resonance and Nanoscale magnetic imaging and other fields [Representative papers by Jiangfeng Du’s team in this direction: Nature Physics 10, 21 (2014); Science 347, 1135 (2015); Nature Methods 15, 697 (2018); Science Advances 5, eaau8038 (2019) ); Science Advances 6, eaaz8244 (2020)]. At the same time, the NV color center was proposed as an electrical signal quantum sensor as early as 2011 [Nat. Phys. 7, 459 (2011)], and it has been proven to have the detection sensitivity of a single charge in an atmosphere at room temperature. Charge and electric field detection. But the NV color center as a quantum sensor, the practical goal is to apply it to the signal characterization of diamond in vitro. In order to use the NV color center for the high-sensitivity and high-resolution characterization of the electrical signal of diamond in vitro samples, it needs to be prepared at the shallow diamond surface at a depth of 10 nanometers to several tens of nanometers. However, the magnetic noise environment near the diamond surface is complicated, and the NV color center is susceptible to magnetic signal interference, which limits its practical application to electric field detection.
Previous page
1
2
QR code

Follow WeChat

Or search for "Guosheng Quantum"

More exciting waiting for you!

Contact:Yin Ying
Email:2891039951@qq.com
Add:3-4/F, Building b1, Zhong'an Chuanggu Science Park, No. 900, Wangjiang West Road, Shushan District, Hefei, Anhui

Anhui Guosheng Quantum Technology Co., Ltd.  Copyright ©  2021 All rights reserved     皖ICP备2021001781号      Powered by: 300.cn